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Abstract

I study a model of cheap talk between a biased sender and receiver. The sender,
who is informed about the state of the world, communicates with a receiver, after which
the receiver decides whether to pay a cost, the size of which is private information, to
learn whether the sender’s message is true. I show that any influential equilibrium
is characterized by a threshold. If the state is above the threshold, the sender tells
the truth, and if the state is below the threshold, the sender lies by pretending to
be a truth-teller. In response, the receiver verifies all messages above the threshold
with positive probability. I then show the receiver’s ability to verify has two effects:
an informational effect and a deterrence effect. Moreover, the deterrence effect can
increase the expected informational effect of verification.
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1 Introduction

During the COVID-19 Pandemic, Vice President Mike Pence, speaking on behalf of the

administration’s Coronavirus Task Force, blamed the increasing numbers of COVID-19 cases

on increased testing:

“...[w]e want the American people to understand it’s almost inarguable that more

testing is generating more cases. To one extent or another the volume of new

cases coming in is a reflection of a great success in expanding testing across the

country.”1

Pence offered no evidence to support his statement, yet wanted voters not to blame the

administration for the increased number of cases. Seminal work on cheap talk shows that

when a sufficiently biased sender communicates with a receiver using cheap talk, no influential

communication can arise (Crawford and Sobel, 1982). Yet, politics is full of instances like

Vice President Pence’s COVID-19 statement where a biased sender engages in cheap talk:

a politician who wants voters to have a high opinion of her explains why her policy failed,

a lobbyist who wants a legislator to support her policies attempts to convince him of the

policy’s merits, a candidate for office seeks to convince voters of her qualifications, etc. Are

there any features of these instances that allow for influential communication?

In this paper, I explore one such feature: the endogenous choice of the receiver—the

audience of the sender’s message—to verify its truthfulness. A voter interested in assessing

the veracity of Vice President Pence’s statement about COVID-19 testing could have found

and read Linda Qui’s—a fact-checking reporter at The New York Times—article in which

she deemed the statement “false,” writing:

“Ramped up testing alone does not account for the uptick in cases. Rather, the

virus’s spread is generating more cases...”2

1Pence (2020)
2Qui (2020). She supported her verdict by quoting Dr. Robert R. Redfield, the director of the Centers

for Disease Control and Prevention, who had recently said “Several communities are seeing increased cases
driven by multiple factors, including increased testing, outbreaks and evidence of community transmission.”
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Relatedly, a legislator who is told by a lobbyist that studies show similar policies have

been successful elsewhere can seek out the studies himself to confirm whether the lobbyist’s

statement is true, and a voter who a candidate tells of her past successes in office can research

this himself. Across these examples, there are three unifying features: (i.) the receiver can

verify the truthfulness of the sender’s message (e.g., he can read Linda Qui’s article deeming

Vice President Pence’s statement false), (ii.) verification speaks to the truthfulness of the

sender’s message but not the state, (e.g., the article did not reveal the responsibility of the

administration for increased COVID-19 cases), and (iii.) the sender does not know how

costly it will be for the receiver to verify her message (e.g., Vice President Pence did not

know which and how many reporters would fact-check him).

In this paper, I incorporate these features into a model of cheap talk communication.

At the beginning of the game, a sender (she) learns the state of the world. Then, she

communicates with a receiver (he) using cheap talk. After observing the sender’s message,

the receiver learns how costly it is to verify the message and chooses whether to pay the cost.

If he does, he learns whether the message is true but does not learn the state of the world.

If he does not, he learns nothing about the message’s veracity. Then, the receiver chooses

an action that is payoff relevant to both players.

In my first result, I show that any influential equilibrium of the model has a straight-

forward structure characterized by a threshold, the sender’s expected utility in equilibrium

when she lies. When the state is above this threshold, the sender tells the truth, and when

the state is below this threshold, she lies by pretending to be a high type. Aside from one

knife-edge case, any message the sender sends truthfully, she also sends as a lie, and the

receiver verifies all messages in the support of the sender’s strategy with positive probability.

This equilibrium structure reveals a dependence between endogenous verification and

lying. If the receiver believes a particular message in the support of the sender’s strategy

is only sent truthfully, he has no incentive to verify it. But, as described above, in any

influential equilibrium, the messages in the support of the sender’s strategy are all above
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a threshold, the sender’s expected utility in equilibrium when she lies. So if there is a

message in the support of the sender’s strategy that is only sent truthfully, a lying sender

has a profitable deviation. This dependence illustrates a key difference between endogenous

verification, studied in this model, and exogenous verification, studied elsewhere (e.g., Dziuda

and Salas, 2018), and illustrates how the usefulness of endogenous verification relies on the

accurate expectation of lying.

I then solve for all influential equilibria when there are three equally likely states and the

cost of verification is uniform. If the intermediate state is closer to the highest state than

the lowest state or the intermediate state is closer to the lowest state and the upper bound

of verification costs is sufficiently small, in any influential equilibrium, the lowest type of

sender lies by mixing between the two highest messages and the higher two types of sender

tell the truth. Otherwise, in any IE, the lower two types of sender lie and the highest type

tells the truth.

I then show that as the upper bound of verification costs approaches infinity, the prob-

ability of verification in equilibrium approaches zero, and the receiver’s belief when he does

not verify approaches his prior. On the other hand, as this upper bound approaches zero,

the probability of verification approaches one, but the low-type sender continues to lie in

equilibrium. This is due to the dependence between endogenous verification and lying. If

the low-type sender stopped lying, the receiver would never verify, but this would provide a

profitable deviation. Hence, when the upper bound of verification costs approaches infinity,

my model approximates traditional cheap talk. However, when it approaches zero, there is

still lying in equilibrium.

Analysis of the three-state case illustrates that there are two effects of verification. The

first is the direct informational effect, which is the difference between the variance of the

receiver’s belief when he does not verify and the expected variance of his belief when he

does. The second is an indirect deterrence effect of verification: verification can deter the

intermediate type from lying due to an endogenous cost of lying that emerges in equilibrium.
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Together, these effects mean that in any influential equilibrium, the receiver’s expected utility

is higher than what he obtains without this verification technology.

One might conjecture that the informational and deterrence effects act like substitutes:

the greater the deterrence effect, the smaller the informational effect. However, I show this

intuition is not always correct. In particular, in some cases, the expected informational effect

of verification is greater when verification has a deterrence effect than when it does not.

I conclude by analyzing the sender’s lying strategy when she mixes between messages

when lying. In particular, I show that when the upper bound of verification costs is large,

increasing the intermediate state leads the sender to lie more with the intermediate message

and that when the sender often lies with the highest message, increasing the upper bound

of verification costs leads her to lie more with the highest message.

2 Related Literature

This paper examines a setting where influential cheap talk communication occurs between a

sender and receiver despite the sender’s bias. In the seminal paper on cheap talk, Crawford

and Sobel (1982) show that when the sender is sufficiently biased, no information trans-

mission occurs in equilibrium. This paper joins others on communication with detectable

lying in cheap talk in showing that if the receiver can detect a lie sent by the sender—either

with exogenous probability (e.g., Dziuda and Salas, 2018; Holm, 2010) or, as in this paper,

through an endogenous choice by the receiver to verify the sender’s message (e.g., Sadakane

and Tam, 2023; Levkun, 2022; Ball and Gao, 2025)—influential communication arises despite

the sender’s bias.3

In Sadakane and Tam (2023), the paper closest to mine, the receiver chooses whether

to incur a publicly known cost to inspect a message sent by a privately informed sender.

In my model, less punishing off the equilibrium path beliefs mean that in any influential

3Less related to this model, others study exogenously detected deceit in other communication frameworks
like Bayesian persuasion (e.g., Ederer and Min, 2022; Venkatesh et al., 2025) or detectable lying when the
sender’s bias is limited (e.g., Balbuzanov, 2019)
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equilibrium, except in one knife-edge case, all messages in the support of the sender’s strategy

are sent truthfully and as lies and are verified with positive probability. This is not the case

in Sadakane and Tam (2023), where, if the state is uniformly distributed, some messages

sent in equilibrium are not verified. In both models, the receiver’s ability to verify the

sender’s message has two effects: an informational effect, which reveals whether the sender’s

message is true, and a deterrence effect, which deters intermediate types of senders from

lying. However, in Sadakane and Tam (2023), the cost of verification completely offsets the

informational effect. In contrast, when the receiver has private information about his cost,

the informational effect exceeds the ex-ante expected cost of verification. Moreover, because

the cost in my model does not offset the informational effect, I show that, in some cases, the

deterrence effect can increase the expected informational effect.

My model is also related to Dziuda and Salas (2018), in which a biased sender commu-

nicates with a receiver who learns whether the sender’s message is true with an exogenous

probability. In contrast, in my model, the receiver endogenously chooses whether to verify

the sender’s message. This choice produces a distinct equilibrium structure. In Dziuda and

Salas (2018), some intermediate messages are only sent truthfully, whereas, in my model, all

messages in the support of the sender’s strategy are sent truthfully and as lies.4 When veri-

fication is exogenous, messages that are only sent truthfully on the equilibrium path are still

verified; this prevents the sender from deviating to lying with one of these messages. When

verification is endogenous, messages only sent truthfully on the equilibrium path are never

verified, giving the sender a profitable deviation. Hence, my model illustrates a dependence

between the usefulness of verification and the expectation of lying.

This paper is also related to models of cheap talk with an exogenous cost of lying. This

cost might arise due to a psychological cost associated with lying (e.g., Kartik et al., 2007;

Minozzi and Woon, 2013) or the existence of receivers who take the sender’s message at face

value (e.g., Kartik et al., 2007).5 In both cases, deception emerges in equilibrium, but the

4Except in a knife-edge case discussed below.
5To a lesser degree, my model is related to a broader literature of strategic communication where lying
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cost of lying constrains the sender to the extent that information can be conveyed despite

disagreement between the sender and receiver(s). In my model, the receiver does not pay an

exogenous cost to lie. Yet, I show that in equilibrium, an endogenous cost of lying emerges:

because verification does not reveal the state, an intermediate-type sender caught lying will

be pooled with the lower types who also lie. This cost is the source of the deterrence effect

of verification.

Finally, in its applications, this paper is related to the literatures on fact-checking and

informational lobbying. The former literature is primarily empirical (e.g., Weeks and Gar-

rett, 2014; Weeks, 2015; Nyhan and Reifler, 2010), but includes some theoretical work (e.g.,

Levkun, 2022). Of particular relevance to my paper are Nyhan and Reifler (2015) and Lim

(2018), who document empirical evidence of a deterrence effect of fact-checking on politi-

cians’ behavior, and Gottfried et al. (2013) and Pingree et al. (2014), who document empirical

evidence of an informational effect of fact-checking. The latter literature encompasses the-

oretical (e.g., Ellis and Groll, 2020) and empirical work (e.g, Hojnacki and Kimball, 1998).

My paper is closest to Potters and Van Winden (1992) and Austen-Smith and Wright (1992),

which analyze settings in which a biased lobbyist is able to convey her private information

to a politician who recognizes the lobbyist is biased. However, my setting does not rely on

information acquisition or signaling being costly.

3 Model

There is a sender (S,“she”) and a receiver (R, “he”). At the beginning of the game, the

sender privately learns the state of the world, her “type”, θ ∈ Θ, where Θ is a finite subset

of [0, 1], each θ ∈ Θ occurs with probability h(θ) > 0, N = |Θ|, and θ ∈ Θ are indexed

such that θ1 < ... < θN . The sender communicates with the receiver by choosing a message

m from the message space M = θ. If m = θ, the message is “true”—the sender tells the

is costly (e.g., Nguyen and Tan, 2021; Guo and Shmaya, 2019).
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truth—and if m ̸= θ, the message is “false”—the sender lies.6

After observing the sender’s message, the receiver decides whether to verify it (c = 1) or

not (c = 0). Verification is costly; if the receiver verifies, he pays the cost βκ where κ ∈ [0, 1]

is private information he learns at the start of the game and β > 0 is a parameter observed

by both players. I assume κ has a prior distribution g and g(κ) > 0 for all κ ∈ [0, 1]. If the

receiver verifies the sender’s message, he learns whether it is true (v = t) or false (v = f)

but does not learn the state. If he does not verify, he learns nothing (v = ∅). Finally, the

receiver selects an action a ∈ [0, 1].

Preferences. The receiver has a utility function uR(κ, θ, a) = −(θ − a)2 − c · βκ, and the

sender has a utility function uS(a) = a. Note, the receiver’s payoff depends on the state—in

particular, he wants to choose the action that matches the state—while the sender wants

the receiver to choose a = 1.

Equilibrium. A (mixed) strategy for the sender is a probability function σ(·|θ) : Θ →

∆M .7 A message m is “on the equilibrium path” or in “the support of” the sender’s strategy

if σ(m|θ) > 0 for at least one θ, and is “off the equilibrium path” otherwise. A strategy

for the receiver is a tuple (c, a) where c : K × M → {0, 1} and a : M × {t, f, ∅} → [0, 1].8

The game is solved for perfect Bayesian equilibrium (henceforth, an “equilibrium”), where

a PBE is a triple (σ, c, a) and a belief assessment such that:

1. If m ∈ M is in the support of σ(m|θ), m maximizes the sender’s expected utility taking

(c, a) as given.

2. If (c, a) is chosen, c maximizes the receiver’s expected utility given E[θ|m] and a max-

imizes the receiver’s expected utility given µ2 = E[θ|(m, v)].

6Since the sender is restricted to choosing a single message rather than allowed to choose a subset of the
message space (e.g., m = {θj , θk}), these definitions are equivalent to the definitions in Sobel (2020).

7∆(X) denotes the space of lotteries over X.
8I restrict attention to equilibria where the receiver plays a pure strategy. This is without loss of generality

as the receiver has a unique best response to any posterior belief about the sender’s type due to the strict
concavity of his utility function.
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3. Beliefs µ1 and µ2 are generated using Bayes’ rule on the equilibrium path.

Throughout the paper, I focus on influential equilibria (henceforth, IEs).

Definition 1. An equilibrium is influential if a∗(m, v) is not constant on the equilibrium

path (Sobel, 2013).

Assumptions. As in many cheap talk games, the set of equilibria is large. In light of this,

I make the following assumptions to refine the set of equilibria.

Assumption 1. When lying, the sender’s strategy is independent of θ.

In equilibrium, when the sender lies, she must be indifferent between any lies within the

support of her strategy. Therefore, an equilibrium where the sender conditions her lying

strategy on θ requires different types of senders to use different strategies to lie even though

each strategy yields the same expected utility. To simplify the analysis of the game, I assume

the sender’s strategy is independent of θ when she lies.

Assumption 2. If there is a message m that is not in the support of the sender’s strategy,

then upon seeing m, the receiver believes θ = m and chooses a = m.

This assumption can be justified by assuming that if a message is off the equilibrium

path, there is an infinitesimally small probability the truth is accidentally revealed by the

sender through a slip of the tongue (e.g., Hart et al., 2017).

Discussion of the Model. This paper studies a model of cheap talk communication

between an informed but biased sender and receiver with three additional features: (i.)

the receiver has access to a verification technology, (ii.) the verification technology reveals

whether the sender’s message is true but not state, and (iii.) the sender does not know the

receiver’s verification cost when she chooses her message.

Communication Between a Politician and a Voter

9



This model applies naturally to communication between a politician, who wants to avoid

blame for a policy failure, and a voter, who wants to accurately assign blame to the politician,

when (i.) journalists will issue fact-checking reports of the politician’s statement, which the

voter can access, (ii.) the fact-checking reports assess whether the politicians’ statement is

true but not her culpability for the policy failure, and (iii.) the politician does not know

which journalists will fact-check her statement, which determines how costly it is for the

voter to verify.

In this application, β, the parameter in the receiver’s cost of verification that scales the

realization κ, represents features of the political or media environment that affect the cost to

access fact-checked information. For instance, larger values of β might represent a situation

where few media organizations fact-check politicians’ statements. Or, larger values of β

might represent a situation where the politician is unlikely to be fact-checked because she is

a local politician.

Informational Lobbying

This model also applies to informational lobbying of a legislator by a non-allied lobbyist.

Suppose a lobbyist wants to convince a legislator to support an energy policy, and the

legislator wants to support the policy if and only if it will be successful. As part of the

lobbyist’s efforts, she informs the legislator that studies have shown similar policies to be

successful when implemented elsewhere. In this example, (i.) the legislator can verify whether

the lobbyist’s message is true by finding and reading the studies, (ii.) this will reveal whether

the lobbyist told the truth but now whether the policy will be successful, and (iii.) the

lobbyist does not know the legislator’s cost to verify because she does not know the legislator’s

time and resource constraints.

In this application, β might vary with the legislator’s resources. For instance, given the

difference in staff sizes, β might be larger for a member of the House of Representatives than

a member of the Senate.
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4 Analysis

4.1 Equilibrium Structure

I begin by considering the receiver’s action as a function of the message he observes and any

additional information learned from verification. In the final action of the game, he solves:

max
a∈[0,1]

−E[(θ − a)2|(m, v)].

This expression is uniquely maximized when a∗(m, v) = E[θ|(m, v)].

Before choosing his action, the receiver decides whether to verify the sender’s message.

The optimality of a∗(m, v) and the fact that the receiver has quadratic loss utility means he

will verify the sender’s message if:

V ar(m|c = 0)− ϕ(m)V ar(m|c = 1, v = t)− (1− ϕ(m))V ar(m|c = 1, v = f)

=V ar(m|c = 0)− (1− ϕ(m))V ar(m|c = 1, v = f)︸ ︷︷ ︸
Informational Effect of Verification: Λ(m)

> βκ, (1)

where V ar(m|·) is the variance of the receiver’s belief, ϕ(m) is the receiver’s conjecture about

the probability message m is sent truthfully, and the second line follows from the fact that

V ar(m|c = 1, v = t) = 0. The left-hand side of (1) represents the informational effect of

verification, which is the difference between the variance in the receiver’s belief if he does not

verify and his expected variance if he does. I denote this Λ(m). Intuitively, for the receiver

to verify the sender’s message, the informational effect must exceed the cost. From (1), it

is clear the receiver will not verify a message he believes is only sent truthfully, nor will he

verify a message he believes is only sent as a lie since Λ(m) = 0 in both cases.

In any IE, some types of sender must lie. To see why, suppose this is not the case. Then,

the receiver believes all of the sender’s messages without verifying them. However, if this is

the case, a low-type sender has a profitable deviation to sending a higher message. Hence,
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in any IE, at least one type of sender lies and receives an expected payoff ulie, which must

be independent of θ by Assumption 1.

In the following proposition, I provide a characterization result for any IE.

Proposition 1. In any IE, the sender tells the truth if θ > ulie and lies if θ < ulie; when

the sender lies, she lies by randomizing over each message m > ulie with positive probability;

and the receiver verifies all messages m > ulie with positive probability.

Proposition 1 states that any IE has a threshold structure: the sender tells the truth when

she has a high type and lies when she has a low type by randomizing over messages that

are sent truthfully, and the receiver verifies all messages m > ulie with positive probability.9

Moreover, except in the knife-edge case where θ = ulie, any message that is sent truthfully

is sent as a lie and verified with positive probability.

The intuition for this structure is as follows. As discussed above, in any IE, at least one

type of sender must lie. Moreover, all messages m ̸= ulie that are sent truthfully are also sent

as lies.10 Suppose not. Then, there is a message m that is only sent truthfully. The receiver

will not verify m and will choose a(m, ∅) = m. Either m > ulie or m < ulie. The sender can

deviate from lying to sending m in the former. In the latter, the sender can deviate from

telling the truth with m to lying.

Consider the sender with type θ > ulie and suppose she lies. As a result, she receives an

expected payoff of ulie. Since the type-θ sender lies, m = θ must be off the equilibrium path.

This is because Assumption 1 implies all senders who lie use the same strategy, meaning

m = θ cannot be sent as a lie. Since m = θ is off the equilibrium path, Assumption 2 implies

the sender can deviate from lying to reporting m = θ, which will be believed. Thus, a sender

of type θ > ulie tells the truth.

Consider the sender with type θ < ulie, and suppose she tells the truth. When the

9Proposition 1 provides a characterization, not existence. Without more structure on Θ, it is difficult
to derive a necessary and sufficient condition for existence. However, in Section 4.2, I solve for all IE for a
particular Θ. Moreover, in the Supplementary Appendix, I provide sufficient conditions for the existence of
some IEs.

10In the Appendix, I address the knife-edge case where θ = ulie.
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receiver verifies m = θ, he chooses a(m, t) = θ < ulie. As discussed above, it must be that

m = θ is also sent as a lie. This implies the action the receiver takes if he does not verify

m = θ is also smaller than ulie since the sender tells the truth if θ > ulie. Hence, the sender

with type θ < ulie who tells the truth has a profitable deviation.

Equilibrium Structure The structure of any IE in this model is similar to the structure

of equilibria in other models where the fact that the receiver can detect the sender’s lies

through exogenous verification (e.g., Dziuda and Salas, 2018) or endogenous verification

(e.g., Sadakane and Tam, 2023) allows for influential communication despite the sender’s

bias. Across these models, high types tell the truth, and low types lie by pretending to be

high types. Yet in Dziuda and Salas (2018) and Sadakane and Tam (2023) not all messages

that are sent truthfully are sent as lies. In contrast, besides in the knife-edge case where

there is a θ such that θ = ulie, all messages sent truthfully are also sent as lies.

Relative to Dziuda and Salas (2018), this distinction emerges because of the difference

between exogenous and endogenous verification. If the receiver believes a message is only

sent truthfully, he will not pay the cost to verify it when verification is endogenous. However,

if he never verifies a message that is in in the support of the sender’s strategy, the sender

can deviate to that message without fear of getting caught. Hence, in equilibrium, the

receiver must verify all messages in the support of the sender’s strategy that would yield

a higher payoff to a lying sender if believed than ulie. Yet, the receiver cannot commit to

verifying every message; he will only verify if doing so is sequentially rational. This requires

that each message the sender sends truthfully she also sends as a lie. In contrast, if a

message is stochastically verified, it will be verified with positive probability even if it is only

sent truthfully on the equilibrium path. This constrains the behavior of the sender. Thus,

this comparison illustrates a sense in which successful verification requires suspicion to be

effective—otherwise, the receiver will not verify the sender’s message.

Relative to Sadakane and Tam (2023), the distinction emerges due to assumed off the
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equilibrium path beliefs. To see this, suppose that in my model, like Sadakane and Tam

(2023), the sender can send a message m = [θj, θk] with the meaning “the state is between”

θj and θk. If m ∈ [θj, θk] this message is truthful and if m /∈ [θj, θk] this message is a lie.

Furthermore, consider the following example:

Example 1. Θ = {0, 1
32
, 3
32
, 1}, h(θ) = 1

4
for all θ, β = 1, G = U [0, 1], the sender sends

m = 1 if θ = 1, m = [ 1
32
, 3
32
] if θ ∈ { 1

32
, 3
32
}, and lies by reporting m = 1 if θ = 0.

When the receiver observes m = 1, he verifies when κ < 1
4
, and he never verifies m =

[ 1
32
, 3
32
]. Given such a strategy, the type-0 sender and the senders of types 1

32
and 3

32
are

indifferent between sending m = 1 and m = [ 1
32
, 3
32
] because both messages yield an expected

payoff of 1
8
. However, among other profitable deviations, the type- 3

32
sender can deviate to

m = 3
32
, which will be believed. In contrast, Sadakane and Tam (2023) assume the receiver

believes a sender who deviates is the lowest type. This punishing belief can support this

behavior in equilibrium.

4.2 Three-State Example

Proposition 1 characterizes any IE. In this section, I focus on the case where Θ = {0, θ2, 1}

with θ2 ∈ (0, 1), h(θ) = 1
3
for all θ, and G = U [0, 1].11 This case maps well into the

example of informational lobbying about a policy that may have a negative (θ = 0), middling

(θ = θ2) or positive impact (θ = 1) on a politician’s—the receiver’s—district. A lobbyist—

the sender—who wants the politician to support the policy, communicates with the politician

about studies that show the policy’s impact when implemented elsewhere. After observing

the lobbyist’s message, the politician can verify it by researching whether the studies the

lobbyist cited support the claim she made.

The following proposition establishes all IEs given these preliminaries.

11Note, in the traditional cheap talk model with these preliminaries, there is no influential equilibrium.
To see this, suppose not. Then there must be m and m′ such that a(m) ̸= a(m′). But then a(m) > a(m′)
or a(m) < a(m′), which implies there is a profitable deviation.
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β̃

E[θ]
θ′2

θ′′2

β

ulie

Figure 1: Expected utility from lying with m = 1 and from deviating to m = θ2, which is
off the equilibrium path, for the sender of types θ ∈ {0, θ2}. Assumes θ′2 =

1
3
and θ′′2 = 2

3
.

Proposition 2. Define β̃ and β as in (3) and (5). An IE exists in all regions of the

parameter space, and any IE is of one of the following. When θ2 <
1
2

(a.) and β > β̃, an IE exists where the sender tells the truth when θ = 1 and lies when

θ ∈ {0, θ2} by sending m = 1;

(b.) and β < β, at least one IE exists where the sender tells the truth when θ ∈ {θ2, 1} and

lies when θ = 0 by randomizing between m = 1 with probability σ∗ and m = θ2 with

probability 1− σ∗.

And when θ2 ≥ 1
2
,

(c.) at least one IE exists where the sender tells the truth when θ ∈ {θ2, 1} and lies when

θ = 0 by randomizing between m = 1 with probability σ∗ and m = θ2 with probability

1− σ∗.

Figure 1 provides an intuition for Proposition 2(a) by depicting the type-0 and type-θ2

sender’s expected utility from lying with m = 1 as a function of β. This expected utility

is increasing in β since the probability the receiver verifies is decreasing in β, and a lower

probability of verification means a higher probability of successfully pooling with the type-1

sender. For this type of IE to exist, this expected utility must be weakly larger than θ2,
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which is the payoff that can be obtained by deviating to m = θ2, which is off the equilibrium

path. When θ2 < 1
2
(e.g., θ2 = θ′2) and β is sufficiently large—larger than β̃—this type of

IE exists. Additionally, as β approaches infinity, the probability of verification approaches

zero, and ulie approaches the payoff the sender achieves in the traditional cheap talk model

with these preliminaries, E[θ]. However, when θ2 < 1
2
(e.g., θ2 = θ′′2), this type of IE does

not exist.

Figure 2 provides an intuition for Proposition 2(b) and (c). It depicts the expected utility

of the type-0 sender when she lies with m = 1 and m = θ2 as a function of σ, the probability

she lies with m = 1. The type-0 sender’s expected utility from lying with m = 1 is weakly

decreasing in σ since as σ increases, the receiver is more likely to verify the message and

takes a lower action when he does not.12 On the other hand, as σ increases, the receiver

is less likely to verify m = θ2 and takes a higher action when he does not. So the type-0

sender’s expected utility from lying with m = θ2 is weakly increasing in σ.13

To complete the intuition for Proposition 2(b) and (c), there are two cases to consider.

First, suppose θ2 < 1
2
. If β ∈ (β, β), where β is defined in (7), the curves depicted in the

left panel of Figure 2 have a unique intersection point, denoted σ∗. When β ≥ β, lying with

m = 1 becomes too attractive to the type-0 sender, and there is no longer a σ∗ such that she

is indifferent between lying with m = 1 and m = θ2. And when β ≤ β, there are a continuum

of σ∗ such that she is indifferent between lying with m = 1 and m = θ2. However, for every

σ∗, the receiver verifies both messages in the support of the sender’s strategy with certainty.

This case is depicted in the right panel of Figure 2. In particular, when β ≤ β, there is an

interval, [σ1, σ0], such that if σ ∈ [σ1, σ0], the receiver verifies both messages with certainty.

In all IEs in this region of the parameter space, σ∗ ∈ [σ1, σ0].

Now suppose θ2 ≥ 1
2
. Then lying with m = 1 is never too attractive to the type-0 sender

that she cannot be made indifferent between lying with m = 1 and m = θ2. Hence, there is

12In fact, as depicted in Figure 2, for β sufficiently small and σ sufficiently large (σ > σ1(β)), the type-0
sender’s expected utility from lying with m = 1 is zero since the receiver verifies the message with certainty.

13Although not depicted in Figure 2, for β sufficiently small and σ sufficiently small, the sender’s expected
utility from lying with m = 1

2 is zero since the receiver verifies the message with certainty.
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Figure 2: Left panel: Expected utility from lying with m = 1 and m = θ2 for a sender of
type θ = 0. Assumes β = 6

25
and θ2 =

1
3
. Left panel: Expected utility from lying with m = 1

and m = θ2 for a sender of type θ = 0. Assumes β = 1
20

and θ2 =
1
3
.

no β such that this type of IE does not exist.

One might imagine that as β approaches zero, there will be an IE in which the sender

always tells the truth. As discussed above, this cannot be the case case; there cannot be an

IE where the sender never lies. This is due to the endogenous nature of verification. If the

receiver believes the sender never lies, he has no reason to verify the sender’s messages—even

if the cost of doing so approaches zero. But then, the sender has the ability to lie without

fear of being caught. This insight illustrates how the existence of influential communication

between a biased sender and receiver requires an accurate suspicion that the sender may be

lying. Without this suspicion, the receiver never verifies the sender’s message, but then the

sender can lie freely, destroying influential communication.

The following proposition shows what happens when β approaches infinity.

Proposition 3. When β → ∞, E[θ|(m, ∅)] → E[θ] for all m in the support of the sender’s

strategy.

Proposition 3 illustrates that when the probability the receiver verifies the sender’s mes-

sages approaches zero, my model approaches traditional cheap talk in which the receiver’s

belief on the equilibrium path is equal to the prior. The precise structure of the limit equi-
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librium depends on θ2. When θ2 <
1
2
, the type-0 and type-θ2 sender lie by sending m = 1.14

As a result, when the receiver does not verify the highest message, his belief is equivalent to

the prior. When θ2 ≥ 1
2
, the type-0 sender lies by randomizing between m = θ2 and m = 1.

In equilibrium, she must be indifferent between these lies. In particular, in the limit, this

means she must be indifferent between the two actions the receiver takes when he does not

verify.

The Effects of Verification Let ΓCT denote the version of the three-state model that

is identical except the receiver does not have the ability to verify. Put differently, ΓCT is

the traditional cheap talk model. Perhaps unsurprisingly, the ability to verify the sender’s

message improves the receiver’s expected utility relative to her expected utility in ΓCT .15

Proposition 4. In any IE, the receiver’s expected utility is strictly higher than his expected

utility in ΓCT .

There are two reasons the receiver’s expected utility is higher when he can verify the

sender’s message than in ΓCT . The first is that verification has a direct informational effect,

Λ(m), which is the difference between the variance in the receiver’s belief if he does not

verify and his expected variance if he does. Although verification is costly, ex-ante, the

informational effect outweighs the expected cost.16

Verification also increases the receiver’s expected utility through an indirect deterrence

effect. In equilibrium, verification generates an endogenous cost of lying for the type-θ2

sender. If she lies and is caught, she will be pooled with the type-0 sender. In some cases,

this cost of lying deters the type-θ2 from lying.

The deterrence effect can be seen in the IE described by Proposition 2(b) and (c).17 In

14In fact, this is true for any β such that this IE exists.
15In ΓCT , no informative equilibria exists.
16In contrast, in Sadakane and Tam (2023), the direct informational effect is completely offset by the

cost of verification because the equilibrium is constructed such that when the receiver verifies, he is exactly
indifferent between verifying and not verifying.

17This IE exists simultaneously with the IE in which verification only provides an informational effect,
described by Proposition 2(a), when θ2 < 1

2 and β ∈ (β̃, β)
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this IE, the type-θ2 sender tells the truth. Deviating to lying with m = 1 leads to a payoff

of a(1, ∅) > a(θ2, ∅) if the receiver does not verify. But when he does, the type-θ2 sender is

punished by the receiver choosing an action that pools her with the type-0 senders who also

lie. In this IE, this punishment is costly enough to deter the type-θ2 sender from lying.

While the informational effect of verification is present in all IEs, the deterrence effect is

not—in the IE described by Proposition 2(a), the type-θ2 sender is not deterred from lying.

Moreover, when θ2 <
1
2
and β ∈ (β̃, β), two IEs exist: one where verification has a deterrence

effect and an informational effect and one where verification only has an informational ef-

fect. A natural conjecture is that these effects operate like substitutes: if verification deters

lying, it reduces the informational value of verifying the sender’s message. In the following

proposition, I show this is not necessarily the case. To do so, I first introduce the concept of

the expected informational effect of verification:

Em∈M∗ [Λ(m)] = Σm∈M∗ρ(m)(V ar(m|c = 0)− (1− ϕ(m))(V ar(m|c = 1, v = f))

where ρ(m) is the probability m is sent on the equilibrium path.18

Proposition 5. Suppose θ2 ∈ (θ, 1
2
), where θ is defined by (12), and β ∈ (β̃, β). For β

sufficiently close to β, the expected informational effect of verification is greater in the IE

where there is a deterrence effect than in the IE where there is not.

An intuition for this result is as follows. Fix θ2. In the IE where verification has a

deterrence effect increasing σ∗ has two effects: it increases the variance in the receiver’s

belief when he observes m = 1 and does not verify, and it increases the probability the

sender lies with m = 1. Together, this means the informational effect of verification is

increasing σ∗. Stated differently, the deterrence effect means the sender lies with more lies in

equilibrium, and the expected informational effect of verification is higher when the sender

lies relatively more often by pretending to be the highest type.

18Recall, ϕ(m) is the probability m is sent truthfully.
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Now consider the IE in which verification only has an informational effect. This informa-

tional effect is decreasing in θ2. This is because as θ2 increases, the variance in the receiver’s

belief when he does not verify m = 1 is increasing, and the variance when he does is decreas-

ing. Put differently, without deterrence, more sender types lie, and the informational effect

of verification increases the more diverse this pool of liars is.

Consider the limiting case where σ∗ = 1. If θ2 > θ, the expected informational effect of

verification is greater in the IE where there is a deterrence effect than in the IE where there

is not. Furthermore, for σ∗ sufficiently close to 1, this is still true. σ∗ is not a parameter; it is

determined in equilibrium and depends on θ2 and β. However, for any θ, if β → β, σ∗ → 1.

Since σ∗ is continuous in β, which I show in the Appendix, if θ2 > θ, and if β is sufficiently

close to β, the expected informational effect of verification is greater in the IE where there

is a deterrence effect than in the IE where there is not.

The connection between the informational effect of verification and probability of verifi-

cation yields the following corollary.

Corollary 1. Suppose θ2 ∈ (θ, 1
2
), where θ is defined by (12), and β ∈ (β̃, β). For β

sufficiently close to β, the ex-ante probability of verification is greater in the IE where there

is a deterrence effect than in the IE where there is not.

Sender’s Lying Strategy When θ2 ≥ 1
2
and β > β, in the unique IE the type-0 sender

randomizes between lying with m = θ2 and m = 1. The following proposition describes how

the sender’s lying strategy depends on θ2 and β.19

Proposition 6. Suppose θ2 ∈ [1
2
, 1). When β > β, σ∗(β, θ2) is

(a.) decreasing in θ2 if β is sufficiently large,

(b.) and increasing in β if σ∗(β, θ2) sufficiently large.

19While this proposition focuses on the case where θ2 ≥ 1
2 , Proposition B in the Appendix obtains an

identical result for θ2 ∈ (0, 1)
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Proposition 2 implies that when θ2 ∈ [1
2
, 1) and β > β, there is a unique σ∗ the type-0

sender’s expected utility from lying with m = 1 is equal to her expected utility from lying

with m = 0. Differentiating this identity and rearranging reveals:

∂σ∗

∂θ2
=

∂b
∂θ2

∂a
∂σ

− ∂b
∂σ

and
∂σ∗

∂β
=

∂b
∂β

− ∂a
∂β

∂a
∂σ

− ∂b
∂σ

,

where a(σ, β) and b(σ, β) are the type-0 sender’s expected utility from lying with m = 1 and

m = θ2 respectively. Previous analysis shows that the denominators of these expressions are

negative so their sign depends on the sign of the numerator.

Consider ∂σ∗

∂θ2
, which is increasing if ∂b

∂θ2
> 0. As θ2 increases, it has two effects on the

type-0 sender’s expected utility from lying with m = θ2. On the one hand, it increases

the receiver’s belief about the state when he does not verify. On the other, it increases

the probability the receiver verifies the message. When β is large and the probability of

verification is high, the first effect dominates and the derivative is positive. Hence, this

proposition shows that when the cost of verification may be quite high, the intermediate

message corresponding to a better state means the type-0 sender lies more often with the

intermediate message.

Now consider ∂σ∗

∂β
, which is increasing if ∂b

∂β
− ∂a

∂β
< 0. These derivatives depend on σ. In

particular, when σ is large, ∂b
∂β

< ∂a
∂β
. Hence, when the type-0 sender lies sufficiently often

with m = 1, increasing the upper bound of verification costs increases the probability the

type-0 sender lies with m = 1.

5 Conclusion

In this paper, I explore a common setting in politics: a biased but informed sender communi-

cating using cheap talk with a receiver. Seminal work on cheap talk shows that the sender’s

bias prevents influential communication from arising in equilibrium. However, I show that

when the receiver can pay a privately known cost to verify the veracity of the sender’s mes-
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sage, there can be influential communication. This speaks to the possibility of influential

communication in settings like a politician speaking to voters when the politician’s message

is fact-checked by a journalist or a lobbyist communicating with a legislator about a study

when the legislator can verify whether the lobbyist accurately reported the study’s findings.

I show that any influential equilibrium of the model has a straightforward structure

characterized by threshold: high-type senders tell the truth, and low-type senders lie by

pretending to be high types. Except in a knife-edge case, any message the sender sends

truthfully is also sent as a lie, and all messages in the support of the sender’s strategy are

verified with positive probability.

I then analyze the model when there are three equally likely states and the cost to verify is

drawn from a uniform distribution. In addition to showing how equilibria change depending

on the upper bound of verification costs, this analysis illustrates that verification has two

effects: an informational effect and a deterrence effect. I explore these effects and show that,

in some cases, the presence of the deterrence effect increases the expected informational

effect. I also explore how the sender’s lying strategy changes with the model’s parameters.
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6 Appendix: Main Results

6.1 Proof of Proposition 1

Proof. Suppose an IE exists.

(i.) Claim: At least one message is sent as a lie.

Proof. Suppose not. Then all messages are sent truthfully. When the receiver observes

a message, he believes it, will not verify, and will choose a = m. But then a sender of

type θ < θN has a profitable deviation to m = θN .

(ii.) Claim: At least one message is sent truthfully.

Proof. Suppose not. Then all messages are sent as lies and the receiver never verifies.

By Assumption 1, the sender’s lying strategy cannot depend on her type, which means

E[θ|m] is constant for all m. But then a∗(m, v) is constant on the equilibrium path.

This violates the definition of an IE.

(iii.) Claim: The sender’s expected utility from lying with message m is constant for all lies

in the support of the sender’s strategy.

Proof. Let Mf be the set of messages that are sent as lies on the equilibrium path.

Suppose the claim is false. Then there exist lies m ∈ Mf and m′ ∈ Mf such that the

sender’s expected utility from lying with m is strictly higher than lying with m′. But

then a liar who was supposed to lie with m′ could deviate to lying with m. Hence, this

is not an IE. Denote the expected utility of lying ulie.

(iv.) Claim: Each message m such that m ̸= ulie and m is in the support of the sender’s

strategy is sent as a lie.

Proof. Let Mt be the set of messages that are sent truthfully on the equilibrium path,

and let M∗ = Mf ∪Mt be the set of messages in the support of the sender’s strategy.
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Suppose the claim is false. Then there exists some m ∈ M∗ such that m is not in Mf

and m ̸= ulie. When the receiver observes m, he will not verify and will choose a = m.

Suppose m > ulie. Then a liar can deviate from lying according to her equilibrium

strategy to lying by reporting m. The message will believed by Assumption 2, so it is

a profitable deviation.

Suppose m < ulie. Then the type-m sender can deviate from truthfully reporting m,

in which case she receives a payoff of uS(m), to lying and get ulie. This is a profitable

deviation.

(v.) Claim: For any θ such that θ ̸= ulie, the sender either lies with probability one or tells

the truth with probability one.

Proof. Suppose not. Consider the type-θ where θ ̸= ulie who randomizes between lying

and telling the truth. She must be indifferent between telling the truth and lying. By

Assumption 1, all senders who lie must use the same strategy, so m = θ can only

be sent truthfully. Hence, when the sender sends m, the receiver does not verify and

chooses a(m, ∅) = m. It is immediate that the sender cannot be indifferent between

telling the truth and lying.

(vi.) Claim: For any θ such that θ > ulie, the sender tells the truth with probability one.

Proof. Suppose not. Then there exists a θ such that θ > ulie and the type-θ sender

lies. Then m = θ is not in the support of the sender’s strategy since the sender’s

strategy when lying is independent of θ and the type-θ cannot lie with m = θ. Since

m is off the equilibrium path, when the sender lies and receives ulie, she can deviate to

the message m. This message will be believed by Assumption 2, and the receiver will

choose a(m, ∅) = θ. By assumption, this is larger than ulie.

(vii.) Claim: For any θ such that θ < ulie, the sender lies with probability one.
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Proof. Suppose not. Then there exists θ such that θ < ulie and the type-θ sender tells

the truth.

The type-θ sender’s expected utility from telling the truth is π∗(m)θ+(1−π∗(m))a(m, ∅),

where π∗(m) is the probability the receiver verifies the message m in equilibrium. Op-

timality implies π∗(m)θ + (1 − π∗(m))a(m, ∅) ≥ ulie, which requires a(m, ∅) > ulie

since θ < ulie. However, (vi.) shows that the sender tells the truth if θ > ulie. Hence

a(m, ∅) ≤ E[θ|θ ≤ ulie] < ulie. This is a contradiction.

(viii.) Claim: If there exists a θ such that θ = ulie, m = θ is only sent truthfully.

Proof. Suppose there exists a θ such that θ = ulie and m = θ is sent as a lie.

Suppose further thatm = θ is only sent as a lie. This implies the type-θ sender lies with

probability one. But she cannot lie by truthfully reporting her type and Assumption

1 implies the sender’s lying strategy is independent of her type.

Now suppose m = θ is sometimes sent truthfully. When m = θ is sent as a lie, it

induces expected utility π∗(m)a(m, f) + (1 − π∗(m))a(m, ∅) = ulie. Since the sender

lies if θ < ulie, a(m, f) < ulie and a(m, ∅) < ulie. Hence, the required inequality cannot

not hold.

6.2 Proof of Proposition 2

Let π(m) denote the probability m is verified in equilibrium. Proposition 2 summarizes the

following proposition.

Proposition A. Define β̃, β, and β as in (3), (5), and (7). An IE exists in all regions of

the parameter space. In particular,

(a.) if β > β̃, an IE exists where the sender tells the truth when θ = 1, lies when θ ∈ {0, θ2}

by sending m = 1, and π(1) ∈ (0, 1),
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(b.) if β ∈ (β, β), where β < β̃, an IE exists where the sender tells the truth when θ ∈

{θ2, 1}, lies when θ = 0 by randomizing between m = 1 with probability σ∗ and m = θ2

with probability 1− σ∗ satisfying (4), and π(1), π(θ2) ∈ (0, 1),

(c.) if β = β, an IE exists where the sender tells the truth when θ ∈ {θ2, 1}, lies when θ = 0

by sending m = 1, π(θ2) = 0 and π(1) ∈ (0, 1),

(d.) and if β < β, a continuum of IEs exist where the sender tells the truth when θ ∈ {θ2, 1},

lies when θ = 0 by randomizing between m = 1 with probability σ∗ and m = θ2 with

probability 1− σ∗ satisfying (8), and π(1) = π(θ2) = 1.

Proof. If direction:

Proposition 1 implies that in an IE, there are three possible cases with respect to the

receiver’s verification: the receiver verifies all messages in the support of the sender’s strategy

with probability π(m) ∈ (0, 1), π(m) = 1 for all messages in the support of the sender’s

strategy, or there exists a θ such that θ = ulie and m = θ is on path but only sent truthfully.

π(m) ∈ (0, 1) for m on the path:

Suppose an IE exists where the receiver verifies each message in the support of the

sender’s strategy probability with probability π(m) ∈ (0, 1). Proposition 1 implies there are

two cases to consider with respect to the sender’s threshold.

First, suppose an IE exists where the sender lies when θ ∈ {0, θ2} by reporting m = 1,

and tells the truth when θ = 1. The type-0 sender and type-θ2 sender’s expected utility from

lying with m = 1 is:

min

{
(2− θ2)

2

18β
, 1

}
uS

(
θ2
2

)
+max

{
1− (2− θ2)

2

18β
, 0

}
uS

(
θ2 + 1

3

)
. (2)

This is a piecewise function that is constant for β ∈ (0, (2−θ2)2

18
) since min{ (2−θ2)2

18β
, 1} = 1,
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and is strictly increasing for β > (2−θ2)2

18
:

∂(2)

∂β
= −(2− θ2)

2

18β2
uS

(
θ2
2

)
+

(2− θ2)
2

18β2
uS

(
θ2 + 1

3

)
> 0

since uS is linearly increasing and θ2+1
3

> θ2
2
for θ2 ∈ (0, 1).

Neither the type-0 sender nor the type-θ2 sender have have a profitable deviation from

lying as long as (2) ≥ θ2 since m = θ2 is off the equilibrium path and can be obtained by

deviating due to Assumption 2. Since (2) is strictly increasing in β when π(1) ∈ (0, 1), this

condition is satisfied as long as β ≥ β̃, where

β̃ ≡ (2− θ2)
3

36(1− 2θ2)
. (3)

(3) is positive for all θ2 ∈ (0, 1
2
). Otherwise, θ2 > (2).

The type-1 sender never has a profitable deviation from telling the truth since:

min

{
(2− θ2)

2

18β
, 1

}
uS(1) + max

{
1− (2− θ2)

2

18β
, 0

}
uS

(
θ2 + 1

3

)
> (2)

Then, since (2−θ2)3

36(1−2θ2)
> (2−θ)2

18
for all θ2 ∈ (0, 1

2
), this IE exists for all θ2 ∈ (0, 1) where β ≥ β̃,

and does not exist otherwise.

Second, suppose an IE exists where the sender tells the truth when θ ∈ {θ2, 1}, and lies

when θ = 0 by randomizing over m ∈ {θ2, 1}. Proposition 1 implies that in this IE, σ∗ = σ

solves

max

{(
1− σ

β(1 + σ)2

)
, 0

}
uS

(
1

1 + σ

)
= max

{(
1− (1− σ)θ22

β(2− σ)2

)
, 0

}
uS

(
θ2

2− σ

)
. (4)

The left-hand side of (4) is a piecewise function that is strictly decreasing in σ for σ ∈
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(0, 1) when β > σ
(1+σ)2

:

∂

∂σ
max

{(
1− σ

β(1 + σ)2

)
, 0

}
us

(
1

1 + σ

)
=

− 1− σ

β(1 + σ)3
uS

(
1

1 + σ

)
+

(
1− σ

β(1 + σ)2

)
∂

∂σ
uS

(
1

1 + σ

)
< 0,

since uS(a) is increasing in a. Moreover, (4) is constant for σ ∈ (0, 1) when β < σ
(1+σ)2

since max{(1 − σ
β(1+σ)2

), 0} = 0. Additionally, (4) → uS(1) when σ → 0, and (4) →

uS(max{4β−1
8β

, 0}) when σ → 1.

The right-hand side of (4) is a piecewise function that is strictly increasing in σ for

σ ∈ (0, 1) when β >
(1−σ)θ22
(2−σ)2

:

∂

∂σ
max

{(
1− (1− σ)θ22

β(2− σ)2

)
, 0

}
uS

(
θ2

(2− σ)

)
=

σθ22
β(2− σ)3

uS

(
θ2

2− σ

)
+

(
1− (1− σ)θ22

β(2− σ)2

)
∂

∂σ
uS

(
θ2

2− σ

)
> 0.

since uS(a) is increasing in a. Moreover, (4) is constant for σ ∈ (0, 1) when β <
(1−σ)θ22
(2−σ)2

,

which implies max{(1 − (1−σ)θ22
β(2−σ)2

, 0} = 0. Additionally, (4) → uS(max{ (4β−θ22)θ2
8β

, 0}) when

σ → 0, and (4) → uS(θ2) when σ → 1.

Hence, there is at least one σ∗ ∈ (0, 1) such that(4) is satisfied as long as max{4β−1
8β

, 0} <

uS(θ2). This is always satisfied if θ2 ≥ 1
2
, but is satisfied if and only if β < β when θ2 < 1

2
,

where

β ≡ 1

4(1− 2θ2)
. (5)

Moreover, given σ∗, the receiver verifies both messages in the support of the sender’s

strategy with probability π(m) ∈ (0, 1) unless

1−
√
1− 4β − 2β

2β
<

4β − θ22 +
√

−4βθ22 + θ42
2β

(6)
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where the left-hand side of (6) is the value of σ such that β = σ
(1+σ)2

and the right-hand side

of (6) is the value of σ such that β =
(1−σ)θ22
(2−σ)2

.

The left-hand side of (6) is defined for β < 1
4
, is increasing in β:

∂

∂β

1−
√
1− 4β − 2β

2β
=

1−
√
1− 4β − 2β

2β2
√
1− 4β

> 0,

→ 1 when β → 1
4
, and → 0 when β → 0.

The right-hand side of (6) is defined for β <
θ22
4
, is decreasing in β over this range:

∂

∂β

√
1− 36β + 36β − 1

18β
=

2βθ22 − θ42 + θ22
√

−4βθ22 + θ42

2β2
√

−4βθ22 + θ42
< 0

→ 0 when β → θ22
4
, and → 1 when β → 0. Hence, for β > β, where β is the value of β such

that

1−
√
1− 4β − 2β

2β
=

4β − θ22 +
√

−4βθ22 + θ42
2β

, (7)

(6) is not satisfied and there exists a unique σ∗ such that (4) is satisfied.

It is clear that a type-0 sender does not have a profitable deviation to truthfully reporting

m = 0 as Assumption 2 implies the message will be believed, yielding her a payoff of uS(0),

which is lower than the payoff she receives from lying, ulie, which is positive. Additionally,

neither the type-θ2 nor the type-1 sender have a profitable deviation to lying because when

the receiver verifies and learns the message was true, he chooses a = 1 > 0 or a = θ2 > 0.

Additionally, note that because β <
θ22
4
and β̃ = 1

4(1−2θ2)
, β < β̃ for all θ2 ∈ (0, 1

2
).

π(m) = 1 for m on the path:

Now, suppose an IE exists where the receiver verifies each message in the support of the

sender’s strategy with probability π(m) = 1. Proposition 1 implies there are two possible

IEs.

First, suppose an IE exists where the sender lies when θ ∈ {0, θ2} by reporting m = 1,

29



and tells the truth when θ = 1. Since the receiver verifies m = 1 with probability one, the

sender of type θ = θ2 receives a payoff of uS(
θ2
2
), which is lower than the payoff she would

get from deviating to m = θ2.

Second, suppose there is an IE where the sender of type θ ∈ {θ2, 1} tells the truth and the

sender of type θ = 0 lies by randomizing between m ∈ {θ2, 1}. The type-0 sender does not

have an incentive to deviate because her payoff is uS(0) on the path and uS(0) if she deviates

to m = 0. Moreover, neither the type-θ2 sender nor the type-1 sender have an incentive to

deviate from telling the truth because doing so will lead to a payoff of uS(0) which is lower

than the payoff on the equilibrium path. Given the previous analysis, this IE exists if there

is a σ∗ such that σ∗

(1+σ∗)2
≥ β and

(1−σ∗)θ22
(2−σ∗)2

≥ β. That is, this IE exists for σ

σ ∈ [σ1, σ0], (8)

where σ1 = −1−
√
1−16β+16β
8β

and σ0 =
4β−θ22+

√
−4βθ22+θ42

2β
. Previously, it was shown that this

interval is not empty as long as β ≤ β. Moreover, the previous discussion implies that

4β−θ22+
√

−4βθ22+θ42
2β

< 1−
√
1−4β−2β
2β

if β < β̃.

θ = ulie and m = θ is sent truthfully:

Finally, suppose an IE exists where there is a θ such that θ = ulie and m = θ is on

path and only sent truthfully. This implies π(θ) = 0. Proposition 2 implies that when

Θ = {0, θ2, 1}, the only case where this IE might exists is if ulie = θ2. In such an IE, the

type-0 sender lies, and her expected utility is 4β−1
8β

. Hence, such an IE exists if θ2 = 4β−1
8β

.

Rearranging, this IE exists if β = β.

Only if direction:

Suppose θ2 ∈ (0, 1) and β ≥ β̃. It is immediate from the previous analysis that the type-0

and type-θ2 sender prefer lying with m = 1 to truthfully reporting the state or deviating

to an off the path message. Moreover, the type-1 sender prefers truthfully reporting the

state to lying or deviating. This implies an IE exists in which the players strategies are as
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described in Proposition 2(a).

Suppose next that θ2 ∈ (0, 1), β ∈ (β, β). It is immediate from the previous analysis that

there is a unique σ∗ satisfying (4). Moreover, given this σ∗, the type-0 sender prefers to lie

than deviating to m = 0 and the type-1 sender and type-θ2 sender prefer to tell the truth to

lying or deviating off path. This implies an IE exists in which the players strategies are as

described in Proposition 2(b).

Suppose that β = β. If the type-0 sender lies and reports m = 1, ulie = θ2. Hence, an IE

exists in which the players strategies are as described in Proposition 2(c).

Finally, suppose β ≤ β. It is immediate from the previous analysis that there is a

continuum of σ∗ such that the type-0 sender is weakly prefers to lie and the type-θ2 and

type-1 sender prefer to tell the truth than deviate off path or lie. Hence, an IE exists in

which the players strategies are as described in Proposition 2(d).

6.3 Proof of Proposition 3

Proof. If θ ∈ (0, 1
2
), then as β → ∞ the unique IE is one where the sender tells the truth

when θ = 1 and lies when θ ∈ {0, θ2}. In this IE, E[θ|(1, ∅)] = θ2+1
3

= E[θ].

If θ ∈ [1
2
, 1), then as β → ∞ the unique IE is one where the sender tells the truth when

θ ∈ {θ2, 1} and lies when θ = 0 by randomizing between m = 1 and m = θ2. As β → ∞, σ∗

solves 1
1+σ

= θ2
2−σ

⇔ σ∗ = 2−θ
1+θ

. Plugging σ∗ in, E[θ|(1, ∅)] = E[θ|(θ2, ∅)] = θ2+1
3

= E[θ].

6.4 Proof of Proposition 4

Proof. In ΓCT , the receiver’s expected utility is:

−2(1− θ2 + θ22)

9
. (9)

To show the receiver’s expected utility is strictly higher in any IE, I show that when he

does not verify, his expected utility is weakly higher. Due to the optimality of the receiver’s
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best response, the fact that verification reduces variance, and the fact that receiver strictly

prefers to verify for some realizations of κ, this is sufficient.

In the IE described by Proposition A(a), the receiver’s expected utility when he does not

verify is the same as his expected utility in ΓCT .

In the IE described by Proposition A(b), the receiver’s expected utility when he does not

verify is − σ
3(1+σ)

− (1−σ)θ22
3(2−σ)

. It can be shown through algebraic manipulation that ub
R ≥ (9)

for all σ and θ2.

In the IE described by Proposition A(c), the receiver’s expected utility when he does not

verify is - 1
4
. It can be shown through algebraic manipulation that ub

R ≥ (9) for all θ2.

And in the IEs described by A(d), the receiver’s expected utility when he does not verify

is − σ
3(1+σ)

− (1−σ)θ22
3(2−σ)

. As discussed above, it can be shown through algebraic manipulation

that ub
R ≥ (9) for all σ and θ2.

6.5 Proof of Proposition 5

To prove Proposition 5, I begin with the following lemma.

Lemma A. Consider the IE described by Proposition 2(b). If β ∈ (β, β), σ∗(β) is continuous.

Proof. Define an implicit function h(σ, β) = a(σ, β)−b(σ, β), where a(σ, β) and b(σ, β) are the

type-0 sender’s expected utility from lying with m = 1 and m = θ2 respectively. Proposition

2 implies that for every β ∈ (β, β) there exists a unique σ∗(β) such that h(σ∗(β), β) = 0.

Proposition 2 also shows that a(σ, β) and b(σ, β) are continuously differentiable in β and

σ. Hence, h(σ, β) is too. Applying the implicit function theorem, for an arbitrary β ∈

(β, β), there exists a unique, differentiable function ϕ(β) such that in the neighborhood of

β, h(ϕ(β), β) = 0 as long as ∂a
∂σ
(ϕ(β), β) − ∂b

∂σ
(ϕ(β), β) ̸= 0. In the proof of Proposition 2,

I showed that ∂a
∂σ

< 0 and ∂b
∂σ

> 0, ensuring this condition is satisfied. Then, because there

is a unique σ∗(β) and unique ϕ(β) for all β ∈ (β, β), σ∗(β) = ϕ(β). Moreover, the local

continuity of ϕ(β) on a connected space implies global continuity on the space.
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I now prove Proposition 5.

Proof. Suppose θ ∈ (0, 1
2
) β ∈ (β̃, β). Then an IE exists where there is a deterrence benefit

from verification (described by Proposition 2(a)) and an IE exists where there is not (de-

scribed by Proposition 2(b)). In the latter, the expected informational effect of verification

is

(2− θ)2

18
. (10)

In the former, the expected informational effect of verification is

(2− σ∗)σ∗ + θ22(1− σ∗2)

3(2− σ∗)(1 + σ∗)
. (11)

(11) is increasing in σ∗:

∂(11)

∂σ∗ =
1

3

(
1

(1 + σ∗)2
− θ22

(2− σ∗)2

)
> 0

Moreover, for σ∗ = 1, (11) = 1
6
. Hence, if

(10) <
1

6

⇔ θ2 ≡ 2−
√
3 < θ2, (12)

then for σ∗ sufficiently close to one, (11) > (10). Note, θ < 1
2
.

Fix θ2 > θ2. Recall from the proof of Proposition 2 that for all β ∈ (β, β), there is a

unique σ∗ that solves (4). Taking the limit of f(σ, θ) and g(σ, θ) as β → β, it is clear that

(4) is uniquely solved by σ∗ = 1 for β = β. Proposition 2 implies that for all β ∈ (β̃, β),

in the IE described by Proposition 2(b) σ∗ ∈ (0, 1). Moreover, Lemma A implies σ∗(β) is

continuous. Hence, for β sufficiently close to β, (11) > (10).

33



6.6 Proof of Proposition 6

Proposition 6 follows from Proposition B.

Proposition B. Suppose either θ2 ∈ [1
2
, 1) and β > β or θ2 ∈ (0, 1

2
) and β ∈ (β, β). In the

IE where the type-0 sender randomizes, σ∗(β, θ2) is

(a.) decreasing in θ2 if β is sufficiently large,

(b.) and increasing in β if σ∗(β, θ2) sufficiently large.

Proof. Consider functions a(σ, β) and b(σ, β, θ2) where a(σ, β) and b(σ, β, θ2) are the type-0

sender’s expected utility from lying with m = 1 and m = θ2 respectively. Proposition 2

implies that for every β > β, in an IE where the type-0 sender randomizes, there exists a

unique σ∗ such that a(σ∗, β) = b(σ∗, β, θ2). Differentiating both sides of the identity with

respect θ2 and rearranging, ∂σ∗

∂θ2
=

∂b
∂θ2

∂a
∂σ

− ∂b
∂σ

. The denominator is negative, since the proof of

Proposition 2 shows a is decreasing in σ and b is increasing in σ. Hence, the sign depends

on ∂b
∂θ2

:

1

2− σ
− 3θ22(1− σ)

β(2− σ)3
,

which is positive if β is sufficiently large.

Again consider the identity a(σ, β) = b(σ, β, θ2) but differentiate both sides with respect

to β. Rearranging, ∂σ∗

∂θ2
=

∂b
∂β

− ∂a
∂β

∂a
∂σ

− ∂b
∂σ

. The denominator is negative so the sign depends on the

numerator, which is positive as long as

σ

β2(1 + σ)3
>

θ32(1− σ)

β2(2− σ)3
. (13)

The RHS and LHS of (13) are both increasing in σ for σ < 1
2
and decreasing in σ for σ > 1

2
.

Comparing their values when σ = 0, σ = 1
2
, and σ = 1 shows that (13) is satisfied for σ

sufficiently large.
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7 Supplementary Appendix: Additional Results

7.1 Existence of an IE

Proposition C. Define β̌ and β̇ as in (14) and (15). An IE exists if at least one of the

following is satisfied:

(a.) E[θ] ≥ θN−1 and β ≥ β̌.

(b.) β ≤ β̇.

Proof. Consider a strategy for the sender where she lies if θ ∈ {θ1, ..., θN−1} by reporting

m = θN and tells the truth if θ = θN . Then when the sender lies, her expected utility is

π(θN)E[θ|θ ∈ {θ1, θN−1}] + (1− π(θN))E[θ], where

π(θN) = G

(
V ar(θN |c = 0)− (1− ϕ(m)V ar(θn|v = f)

β

)
.

The only effect of β on π(θN) is through the denominator, which means π(θN) is decreasing

in β. Hence, E[θ] > θN−1, there is a unique β such that

π(θN)E[θ|θ ∈ {θ1, θN−1}] + (1− π(θN))E[θ] = θN−1. (14)

Denote this β as β̌. For all β ≥ β̌, this IE exists.

Now consider a strategy for the sender where she lies if θ = θ1 and tells the truth if

θ > θ1. In particular, when she lies, she uses a strategy where the probability she lies with

m = θi ∈ {θ2, ..., θN} is σi ∈ (0, 1). A vector of lying probabilities, σ induces a vector of

probabilities of verification, π, where, for a particular π(m) ∈ π, π(m) = G(V ar(m|c=0)
β

). Fix

σ. The only effect of β on π(m) is through the denominator. So there exists a β such that

1 = min(π(m) ∈ π). (15)

35



Denote this β by β̇. Moreover, for all β ≤ β̇, the receiver verifies each m in the support of

the sender’s strategy with certainty.
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